Second-Order Analysis of an Uncracked Member

1. ECCENTRICITY OF APPLIED LOAD =	8	in.
2. TEMP. DIFF. INSIDE TO OUTSIDE =	50	Degrees
3. MIDSPAN BOWING DUE TO TEMP. =	0.61	in.
4. BRACED FRAME - NO JOINT TRANSLATION	1. The Section of the	
5. JOINTS ASSUMED PINNED TOP AND BOTTOM.		
6. MEMBER HAS A SIMPLE SPAN LENGTH =	32	ft.
7. MOMENTS OR DEFLECTIONS THAT CAUSE OUTV	VARD BOWING ARE	POSITIVE.
8. SERVICE LOAD:	T.	
LATERAL LOADS DUE TO WIND, W =	0.2	kip/ft.
APPLIED DEAD LOAD, P(dI) =	10	kips
APPLIED LIVE LOAD, P(II) =	10	kips
PANEL WEIGHT AT MID-HEIGHT =	12.0	kips

OUTW,

Section Properties:

S SARS	.075	ification Factor, CMMF =	loment Mod	acking N	Cra
in	720	AREA =	in4	7020	lgros =
ksi	6	f'c =	in3	1560	S(in) =
pcf	150	Concrete Unit Weight	in3	1560	S(out) =
ksi	4696	Ec =	1. San 23	2	

Pre Stressing Data:

Fpu =	270	ksi	PRESTRESS LOSSES =	0.1	Decimal
Total Aps =	0.85	in	PRESTRESS ECCEN =	0	in.
JACKING =	0.7	Decimal	Decimal (ECCEN. IS + IF BOWING IS OUTWARD)		

Loading Assumption #1 : U = 1.2D + 1.6W + 0.5L

in the second	Truss Be	eam Theory Modification Facto	or, TBMF =	0.25	
1 mg 1 mg	2		Pu =	17.0	kips
Wu =	0.320	kip/ft.	Pu(dl) =	12.0	kips
BETA(d) +	0.71		PHI (k) =	0.75	Sec. 1
	<u></u>	EI = TBMF * PHI(k) * Ec*Iq/(1+B)	BETA(d)) =	3.62E+06	kip-in ²

Pre Stressing Data:

	· · · · · · · · · · · · · · · · · · ·	
DEFLECTION AT MIDSPAN DUE TO Pu*e =	0.346	in.
DEFLECTION AT MIDSPAN DUE TO P/S =	0.000	in.
DEFLECTION AT MIDSPAN DUE TO Wu =	1.221	in.
TOT. ULT. DEFLECTION AT MIDSPAN + TEMP. =	2.182	in.

Determine Additional Deflection at Midspan Due to Total Ultimate Deflection

DELTA1 =	0.189	in.	DELTA2 =	0.205	in.
DELTA3 =	0.206	in.	DELTA4 =	0.207	in.
DELTA5 =	0.207	in.	DELTA6 =	0.207	in.

THERE'S A THIN WALL BETWEEN SUSTAINABILITY AND STRENGTH.

THIN-Wall — Redefining what eco-friendly buildings can be.

With two 3" layers of concrete, THiN-Wall delivers the same insulating and load-bearing performance of thicker walls while using less cement, which minimizes carbon dioxide emissions. THiN-Wall has architects rethinking their approach to sustainable buildings.

- 100% Composite Action for "Nominal Flexural Strength"
- 75% Composite Action for "Flexure Cracking Checks"
- 25% Composite Action for "Deflection Analysis"

NU-Tie	Embedment	Ultimate Load (P) in pounds					
Size	Depth (d)	Test #1	Test #2	Test #3	Test #4	Test #5	Test #6
	0.175	525	623	479	Pull-out	542	0.14
	1	1,594	906	1,431	Pull-out	1,310	0.27
#3	1.5	3,091	3,534	1,686	Pull-out	2,770	0.35
	2	6,145	6,387	5,565	Tie rupture	6,032	0.07

Contact Information

To learn more, visit thin-wall.com or email Douglas.Gremel@owenscorning.com to request a USB drive full of additional information.

Nu-Tie Shear Connector

- Very High Tensile Strength 110 KSI
- Thermally Non-Conductive
- Low Stiffness (Modulus) Mitigates Thermal Bowing 7,000 KSI
- Strong yet Flexible is the best Balance of Strength and Stiffness for Wall Panel Construction
- 2" Embedment 3 kip pullout capacity

Benefits of Nu-Tie

- Fully Insulated Wall Panels with NO thermal bridges from connectors
- Use less concrete Overall wythe thickness reduced
- Use the insulation of your choice from multiple suppliers (EPS or XPS)
- Straight forward and validated design methodology

Design Guidance

The design of structural load bearings walls for the THiN-Wall system follows the methodology of the PCI Handbook. The Nu-Ties are oriented vertically and positioned as per the latest version of the THiN-Wall design software.

Part Number	Insulation Thickness	Color Code		
RNU3 - 216H	2" (50mm)	Green		
RHU3 - 317H	3" (75mm)	Red		
RHU3 - 418H	4" (100mm)	Yellow		
RNU3 - 519H - 24P	5"(125 mm)	Blue		
RNU3 - 6I10H - 24P	6" (150 mm)	White		
RNU2 - 417H - 24FP	4" (100 mm)	Red		

